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Subgrid-scale dissipation of momentum in numerical models of the
large-scale ocean circulation is commonly parameterized as a viscous
diffusion resulting from the divergence of a stress tensor of the form
6= A:Vu. The form of the fourth-order coefficient tensor A is derived
for anisotropic dissipation with an axis of rotational symmetry.
Sufficient conditions for A to be positive definite for incompressible
flows, so guaranteeing a net positive dissipation of kinetic energy, are
found. The divergence of the stress tensor, in Cartesian and spherical
polar coordinates, is given for A with constant and spatially varying
elements. A consistent form of A and ¢ for use in models based on the
Arakawa B- and C-grids is also derived.  © 1983 Academic Press. Inc.

1. INTRODUCTION

The effect of Reynolds® stresses in the oceans, or scales
unresolved by the numerical grid in general circulation
models {GCMs) of the large-scale ocean circulation, is
commonly parameterized in terms of an eddy viscosity,
V.6=V.(A:Vu), where A is a fourth-order tensor. In
modelling the large-scale ocean circulation, A is usually
chosen to be anisotropic with symmetry about the radial
coordinate, and the magnitude of the elements is assumed
independent of position in the fluid. For some applications,
however, a formulation in which the elements of A are
spatially varying is appropriate; for example, if variable grid
resolution is used in a boundary layer, if “sponge” layers are
artificially created to absorb wave energy, or if some
Richardson number dependent formulation is used. GCMs
cast in spherical polar coordinates are now so widely used
that is it often forgotten that the form of the viscous metric
terms in the horizontal momentum equations arises because
A is assumed anisotropic as described in [ 1, 27]. The correct
formulation as an exact divergence in the momentum equa-
tions is important as it guarantees that the basin will be a
net sink of kinetic energy for all flows, provided A is positive
defimite. Proof of uniqueness of solution to the linearized
system 1s based on a dissipation theorem, which also
requires A be positive definite. Further, if the elements of A
are spatially varying, then care must be taken to retain the
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terms which ensure that pure rotation does not gencrate a
viscous stress, The form of the stress tensor for a fluid with
tranverse isotropy is re-examined in Section 2 and the exact
form of its divergence if the elements of A are non-constant
is given in Cartesian and spherical polar coordinates. An
appropriate finite-difference formulation of the divergence
for use in numerical ocean GCMs, based on those
developed by Bryan and Cox at GFDL, Princeton [3, 4],
and now widely used for climate modelling, e.g., [5, 6], 15
presented and discussed in Section 3.

2. VISCOUS STRESS IN ORTHOGONAL
CURVYILINEAR COORDINATES

The basic equations of motion for a non-rotating
Boussinesq fluid subject to a viscous stress are

Du 1
o —EV(p—ng)-i'V-G.

(1}
For a Newtonian fluid, the deviatoric stress tensor, @, is
assumed linearly dependent on the velocity gradients Vu,
o=A:Vuy, (2a)
where A is a fourth-order tensor, whose elements depend on
the local state of the fluid, but not directly on the velocity
distribution, see, e.g., [7]. In the commonly adopted
parameterization of subgrid-scale processes, the turbulent
stresses are assumed dependent on the large-scale velocity
gradients as in (2), although more complex forms of A are
often used, eg., [ 5].
Symmetry of e, ie., 0,= 0, requires a symmetry in the
fourth-order tensor A, i.e., A, = A, Further, it is usually
assumed that no viscous stress is generated in a fluid as a

result of pure rotation, and so A,;,;= 4. Therefore (2a)
reduces to

c=A:e, {2b)
0021-9951/93 $5.00
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where e=1(Vu+4 [Vu]"), and so A has 36 independent
elements. It 15 also assumed that there exists an energy func-
tional % = e:A e, which is second-order differentiable in e.
Hence 8°@/(be;0e.,)=0"P/(Bede;), and s0 Ay, = Ay,
which reduces the number of independent elements to 21,

The rate of change of kinetic energy of a parcel of fluid of
volume V' bounded by a surface S is

D J —n-udl

=Lﬁ4vJHer*muyH»V4AmndV

=L{—p‘}_l(p—pgz)u-l-u-A:e}-dS
-j e:AedV,
v

on applying the divergence theorem and assuming that the
fluid is incompressible (V -u = 0). Therefore, if A is positive
definite in the sense that for any second-order symmetric
tensor e, ¥ =e:A:e >0, then there 1s no internal source of
kinetic energy.

{a} General Form

If we consider a system of orthogonal curvilinear coor-
dinates &,, &5, &, with unit vectors El, £, &, parallel te the
coordinate lines and in the direction of increasing value,
then change in the position vector x corresponding to
increments in &, £,, ;18

5":’1;551E1+h25§222+h3553 &3!

and the divergence of the stress tensor is given by

- 1
E.u'(V‘“)::m{(hzhso'n)‘l‘{‘(hzhldlz),z
‘ 1112113
o)
+{h hsayy) 5} + éh”+hih
o 033
1112

where ( } ; denotes the partial derivative with respect to £,.
Similar expressions for the &,, &; components are given by
cyclically rotating the indices. The strain components are

Uy, U, s
e *—+ hy s

Bk, hhm“

Yy

Uy >
= — h
23 £1ﬂ2

h hhq

T

€=
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633:71—;+h3h, hy +h2h3 B2
i)+ (), @

The above expressions may be found in standard mathe-
matical texts, e.g, [8]. The incompressibility condition
V-u=0isjusttre=0.

(1) Transverse Isotropy. If there is an axis of symmetry
about which the fluid is isotropic, assume that if is the &,
axis; then the only non-zero elements of 4, are 4, A fiin;
given by

a;p dy; dp
Aiq’anu_ Ay 4y 4o (5a)
;3 dyy diz
and
_1 1
Apzp=3la; —ap), Aqzas = 3844,
(Sb)

=1
A3 =344,

and so the number of independent coefficients reduces to
five. A method for determining the above is given in
standard texts on theoretical elasticity, e.g., [8,9]. As
expressed in (1), ¢ is the deviatoric stress tensor, and so
tr 6 =0, which requires

dy3 =y +dp—dis. (5¢)
Hence the stress tensor for an incompressible fluid,
assuming an axis of rotational symmetry, may be expressed
in the coordinate invariant form

+{v—a4

o =(Ay+vie, M) €22,

Op={(v—dAy)en+{v+ 4,)esn, (6)
033 = 2ves,,
Gx=24 e, 623 = 2K 223, Oy =2K €y,
where
1 dyy
Ay = 5(011 ash KMET,
(7)

—

V=< (5'11 +a) —ag;.
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The coefficients A ,,, k,, may be identified with the usual
horizontal and vertical eddy viscosity coefficients. Typical
values of A,, and x,, used in ocean models are order 107
and 1cm?s ™! respectively. A physical interpretation of v
and possible values is discussed in [2] and is addressed later
in part (b).

The dissipation rate may also be expressed in invariant
form

Z=e:Ae=Ayle,; —epn) +3vie, +exn)’

+ 4K (o3, + e )+ 44 82, (8)
and so sufficient conditions for A to be positive definite
(@ >0, for any e) are
Ay >0, Ky >0, vr>0, (%)
(ii} 3-D Isotropy. If the fluid is wholly isotropic, then
Qy33=dy,d,= a3, and a4 = (a;, — a,,)/2 10 (5), and so the
number of independent elements of A reduces to two. In
terms of the viscosity coefficients, for an isotropic fluid
Ay=xp=v
In applications to modeliing the large-scale ocean circula-
tion, Eq.(5) is used with either constant values or with
values dependent on the Richardson number, eg., [5].
Most observational and experimental studies of the ocean
circulation have been concerned with dissipation due to
vertical diffusion and have used the expression (x{u) ) .
as their basis, e.g., [ 10, 11]. In the remainder of this section,
a consistent formulation of viscous stress, in which the
elements of A are spatially varying, is derived for an incom-
pressible fluid in the two most commonly used coordinate
systems.

(b) Cartesian Coordinates: (x,,x5,x3), (b by, h)=
(L1L1)
(1) Transverse Isotropy with Constant  Coefficients.

Substituting (5) in (2b) and (3} yields

1-(V-0)=d 4,00, 1 41y 50) + Ky 53

[+H(xp—v)uss s (10a)
with a corresponding expression for the j component. The
vertical component is

k (V.6)=1,,(1s5 13 + 135 22) + (2v — )4) 11535 (10b)

The physical basis for considering transverse isotropy is
that the vertical scales of motion are much smaller than the
horizontal scales in the ocean. If L, 4 are typical horizontal
and vertical scales, then the last term in (10a), enclosed by
[ 1. is negligible in comparison with the previous if
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d*/L* <1, and v<min(4,,, ik, L%d?). The large-scale
ocean circulation is also assumed to be in hydrostatic
balance, and so the terms in (10b) must be negligible in
comparison with the acceleration due to gravity, g. Hence,
we require x,, U/{gLd) <1 and vU/({gLd) <1, where Uis a
typical horizontal velocity scale. Typical values are
U~1ms ™, L~10km,d~10m, g~ 10ms~2 and so the
vertical momentum equation reduces to hydrostatic balance
if 54, v € 10°m? 5. Values of v varying from 0 to A4,, are
suggested by [2] for motions ranging from highly convec-
tive in the vertical to fairly stable, as for the oceans.
However, for a consistent shallow-water description with
hydrostatic balance, v does not enter the equations of
motion, provided it is small enough.

(i1} Spatially Varying Coefficients. Maintaining the
dependence derived for transverse isotropy, but now letting
the elements of A vary spatially, yields the following expres-
sion for the i-component of the divergence of the stress

P-Veo={dyu )+ {Aputa} 2+ {kuthis) 5
[+ (a—v)ussl
LHear) aus g — (V) uss]
+(An) pay —(Ap) s o

(11a)

with a corresponding expression for the j component. The
vertical component is

k-V.o= (1 prtia ) 1+ (Kastta2) 5
+{(2v =Ky 135}

TRy a3t Kot 3t Ky aliz s,

(11b)

Equation (I fa) is somewhat different from the form occa-
sionally quoted in which the underlined terms are missing,
but it is the strictly correct form if pure rotation does not
generate a viscous stress. It may be argued that pure rota-
tion will not eccur in the spin-up of an ocean GCM, but it
is a free solution of the problem and so it could be generated
as a result of rounding errors. It is worth emphasizing that
the underlined terms in (11a) arise because the viscous
diffusion of momentum results from the divergence of
a stress tensor. In describing the diffusion of heat with
variable diffusion coefficients, no such terms would arise.

Once again, under the shallow-water approximation,
the [ J-terms in (1la) may be neglected, and if x,,
v <€ (gld)/U, (11b) may be ignored.

(¢) Spherical Polar Coordinates: (4, ¢,r), (hy, hy, h3)=
(rcosg, r 1)

The coordinate system in chosen to coincide with that
used in ocean modelling, ie., 4 is the longitude, ¢ is the
latitude, and r is the radial coordinate. The horizontal
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components of the divergence of the stress tensor, as given
by (3), are
|

- 1
?\.-(V-G)=0',.;q,+;0'¢;_‘,ﬁ+r—a)s—¢0'

Ak

1
+; (30’,;._ —_ 20’245 tan ¢]

(12)
- (v ! + L o
Wvee= - ii
b-(V-o) Trirt = Ooos roos g %
1
T 7 (o, ~ 04s) tan ¢ + 30.;)
and the strain field, as given by (4), 1s
1 Lo il
€= u; ;——ugytan —,
Y rcosgd Mo ? r
! +M, e u
=Tu e [Tl T
€oo =7 Ug ot ]
COSgﬁ u
Zey= - + Hy as 13
=" (cosgﬁ)!‘b y o8 ¢ 1o (13)
U, u, ;
28,_}_:“‘;_’_—‘_;___’,_,
Tr  rcos¢
u, u,
2€r¢=“¢.r_7¢+_—d.

¥

(i) Transverse Isotropy with Constant Coefficients, 1f
the fluid has an axis of isotropic symmetry coinciding with
the r axis, then A is given by (5), and so combining with (13)
and substituting in (12} vields

N U i (cosgu; 4} 4
(V0= Ay o s
{1 —tan® ¢) 2sin ¢ }
P Ap Kty e
+ r? “ rlcos?g “s. M
+2 U s +“;.,r “;}
P cosg¢g r r*
+( ) ur,ri. :l
—V
Kt rcos ¢
- _ Uy i (cos P ug 4) 4
¢'(V'G)_AM{J‘2COSZ¢ r?cos ¢
(1 —tan® ¢) 2 sin ¢
* r? ? 7 ¥ cos® ¢ R

ur.¢5 H¢,, ng
2y, iy BT
[ M{ r? rooor?

+(KM_V)%], (14)
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where A ,,, k,,, v are as defined in (7). In ocean models, the
thin shell approximation, |r| € R, the Earth’s radius, is
made. This results in the factors r~! in (14) being replaced
by R~! and 8/ér being replaced by 8/dz. Further, the
[ J-terms may be neglected under the shaliow-water
approximation.

(ii) Spatially Varying Coefficients. If the elements of A

vary spatially, then (14) is modified to

3 (A u;.,i.).ﬁ.
h(V-e)= r;::oszqﬁ

(1—tan’¢)  2sing
+ r? Aset; rlcos? ¢

tan ¢ Uy,
+{ 72 u"'_‘_rzcr;)sgﬁ} (Au) s

(Ap cos ¢ U; 5). 4
r’cos ¢

MUg i

Us s sin ¢ }
2ty T (Agg) s+ (Kpt,)
{rzcosqé ricosig ? (Aas) s (Ryrtes).

+2 Uy 5 +I‘2_r My

K =Lz

Mlricosg r r?
113

s —v) ¥ C;;‘tqﬁ]

He i Uy U, .
[ * {m_ 7} (. = rcos ¢ (v]‘,.:l

(A cos ¢ ”¢,¢).¢

&)-(V-o‘): (AMu.ﬁ,}.),/i

ricos? ¢ r2cos ¢
(1 —tan? ¢) 2 sin ¢
T At g At

tan Wi ;
o ¢, __u

(15)

Urg Yy _ U
[ {2 e, =220, |

Once again, the explicitly written gradient terms for A 4, x
are required since pure rotations do not generate a stress,
and so A must be symmetric in its third and fourth indices.
Under the shallow-water approximation, the [ ]-terms may
be neglected. A similar set of equations was proposed by
[127] and adopted by [ 13, 147]. The formulation was slightly
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different, which in the present notation is equivalent to
setting v =0 in {6) and making the shallow-water approxi-
mation, and so neglecting the [ ]-terms in (15).

3. A CONSISTENT FINITE-DIFFERENCE
FORMULATION

Although carly papers on finite-difference modeis of the
large-scale ocean circulation specify the divergence of the
stress tensor in terms of the symmetric components of
strain, the actual numerical formulation in [4] is like (15),
but with the explicit gradient terms missing as 4, K, are
assumed constant. For simplicity and brevity, possible
formulations of the above are described for Cartesian finite-
difference grids of the form typically used in ocean models,
see [ 15, 16].

(1) Arakawa B-grid.

The grid is staggered with u, v specified at corners of a
rectangle in the horizontal plane with w at the centre.
In the vertical plane w-points lie between u, » points. The
incompresstbility condition may be expressed as

S ¥ +d. 554+ 06,w=0,

where 6.(:), (-)° denote centered-differencing and
-averaging, respectively, and are given by

1

(5_1”).'4—1/2.;‘.::: (i1 je— Uy 0)

Ai+1,’2
|

(‘5x”')i.j,k+ 2= A_ (w;, /2, 1.k +1/2
! (16)
- wi—l/l.j,k+l/2)

« 1

(Ui ik = 3 (24 0t 4,

where 4,, 1, =(4,,, +4,)/2, with similar definitions for y,
z. Only grid-spacings which vary in the direcion of progres-
sion are considered. Therefore Ax is a function of #, but not
of j, k, and the operators 4, &, and é_ are interchangeable,
and similarly for the averaging operators. However, the
operators &, and ()" are not interchangeable if the grid-
spacing is variable, and so the finite-difference equivalent of
V% (Vg p) is not identically zero as it is for constant grid-
spacing. The remainder is O(max{(4x)?, (dy)*}), which is
the same as the accuracy of the centered-differencing
scheme. The strain components are

e..=0,.4" €

. .
¥y 5_1‘ v, €= 5zwa

2e..=0,u" 40,0, 2e, =8 u+d W

2e, =3.04 8,7
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The stress components will be of the form, using (6),

Oy = A MEx— A MmEyy— ve R

G, =24ye 6., =28 e,

Xy
where A4,, is defined at w-points in the horizontal and wu,
v-points in the vertical, and k,,, v are defined at w-points in
both the horizontal and the vertical. The i-component of the
divergence of the stress tensor will be of the form

i-(V.o)=48,0.,746,6 "+d.0...

The terms corresponding to the underlined terms in (11a)
will come from

Va= 5‘(-/4 Mé.( 7 )" - 6‘:(A M (5.1'57‘()}'

VK=38.(ky" 6 . w')—8, (vo.w).

Ideally, the finite-difference scheme shouid be formulated
such that there is exact cancelation of the terms of the type
Apd.6,.0in VA, and of the type w8, 5w, if v =K, in VK.
For the B-grid, if the grid-spacing is variable, there is not
exact cancelation. If the grid spacing is constant, there is
exact cancelation in V4, yielding

VA=8,A30,0 —8 Ayd 0,
where the identity 5"‘(a5x5'v)x = aév(}.bx‘v +6 }.aéxbx has been
used. For VK, there is exact cancelation for variable grid-
spacing provided «,,, v are not functions of x, y, yielding

VE=08K,,0 W+ (kp - v) 8,07

If k4 is a function of x, y, then there is cancelation up to
an error of the order of the square of the maximum grid-
spacing for both constant and variable grid-spacings. Of
course, under the shallow-water approximation, the VK
term may be neglected with the diffusion due a variable «,
just resulting from (ke ) ..

The above presentation is a formal derivation of the
viscous terms on a B-grid. In practice, e.g., [4], the double
averaging is not performed, and terms of the form

A Mé,(éx(—u_)'r)y are represented as A,,5, u.

(i) Arakawa C-grid.  The u, v, w-grids are all staggered
in the horizontal, forming a cross with the w-point at the
center, v-points to the north and south, and u-points to the
¢ast and west. In the vertical, the u, p-points are at the same
depth with the w-points in between. The incompressibility
condition may be expressed as

du+d o+d.w=0,
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where the centered-differencing and -averaging operators
are defined similarly to (16). For the C-grid with variable
grid-spacing, the finite-difference equivalent of Vi, x (V,, p)
is identically zero. The strain components are

Eex ™= 5x H, = 5: w,

€,,=0,0, e
2e,,=0,u+d.v, 2e..=0.u+0,w,

2e,.=06.0+6,w

The stress components will be of the form

where A4,, is defined at v-grid points, and x,,, v at w-grid
points. The divergence of the stress tensor is defined by
terms of the form

i- (V : 6) = 5;:0-1,\( + 5,VJx_V + ‘S:G.rz-

The terms corresponding to the underlined terms in {(11a)
come from
Va=5,(4, 8,0)—8.(4, 6,0
=08, Ay 8.5~ 8,4, 8,6
VK= 6:(-@): (Srw) - (5_,((1?:5:%’)

=8 KT O W — 8 K O

+ (KM - v)—“; 5,'<:W=

where the identity 8 (a*8,b) = §,a°8,b" + @™d,, b has been
applied, and the above is valid for variable as well as
constant grid-spacing.

4. SUMMARY
The form of the viscous stress tensor used in models of the

large-scale ocean circulation has been examined. A formula-
tion of the stress tensor for a transversely isotropic fluid for

ROXANA C, WAJSOWICZ

which the elements of A may vary spatially has been
proposed. Its formulation is consistent with the requirement
that pure rotation does not produce a stress in the fluid, and
it permits easy confirmation, if A varies spatially, that the
viscous stress will act as a sink of kinetic energy within the
fluid for all continuous flows. The resuiting extra terms in
the momentum equations, expressed in Cartesian and
spherical polar coordinates, have been caiculated, and the
terms that are negligible under the shaliow-water and
hydrostatic approximations are identified. Also, consistent
finite-difference schemes for the two most commonly used
grids in ocean models have been presented,
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